Modelling 1

 SUMMER TERM 2020

LECTURE 3
 Linear Mappings

Linear Maps

Linear Maps

A function

- $f: V \rightarrow W$ between vector spaces V, W

is linear if and only if:

- $\forall \mathrm{v}_{1}, \mathrm{v}_{2} \in V: \quad f\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=f\left(\mathrm{v}_{1}\right)+f\left(\mathrm{v}_{2}\right)$
- $\forall \mathrm{v} \in V, \lambda \in \mathbb{R}: f(\lambda \mathrm{v})=\lambda f(\mathrm{v})$

Linear Maps

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping value for each basis vector of \vee.

Matrix Representation

Finite dimensional spaces

- Linear maps can be represented as matrices
- For each basis vector \mathbf{b}_{i} : specify the mapped vector \mathbf{a}_{i}
- Write in columns

$$
f(x, y)=x \cdot f\left(\mathbf{b}_{1}\right)+y \cdot f\left(\mathbf{b}_{2}\right)
$$

Columns = Images of Basis Vectors

Example: rotation matrix

$$
\mathbf{M}_{r o t}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

Linear Maps

Purely linear polynomial in coordinates of x :

$$
\begin{array}{r}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
\mathbf{x}=\binom{x_{1}}{x_{2}} \rightarrow f(\mathbf{x})=\left(\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2} \\
a_{31} x_{1}+a_{32} x_{2}
\end{array}\right) \\
f(\mathbf{x})=\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
\sin x_{1}+x_{1} / x_{2} \\
x_{1}+1
\end{array}\right)
\end{array}
$$

Linear Maps

Affine Maps:

- Linear + constant function

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& f(\mathbf{x})=\left(\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+t_{1} \\
a_{21} x_{1}+a_{22} x_{2}+t_{2} \\
a_{31} x_{1}+a_{32} x_{2}+t_{3}
\end{array}\right) \\
&= \mathbf{A} \cdot \mathbf{x}+\mathbf{t}
\end{aligned}
$$

Affine Subspaces

Linear Subspace:

- Line / plane / hyperplane through origin

Affine Subspace

- Line / plane / hyperplane anywhere
- "affine" = "linear + translation" (adding constant)

Combinations of Linear Maps

Concatenation of linear maps are linear:

- Linear maps

$$
\begin{aligned}
& f: V_{1} \rightarrow V_{2} \\
& g: V_{2} \rightarrow V_{3}
\end{aligned}
$$

- Concatenation

$$
\begin{aligned}
& f \circ g: V_{1} \rightarrow V_{3} \\
& f \circ g(x)=f(g(x))
\end{aligned}
$$

- $f \circ g$ is a linear again (easy to prove).
- Linear mappings are closed w.r.t. to "o"
- Same holds for affine maps.

Matrix Multiplication

Composition of linear maps corresponds to matrix products:

- $f(g)=f \circ g=\mathbf{M}_{f} \cdot \mathbf{M}_{g}$
- Matrix product calculation:

The (i, j)-th entry is the dot product of row i of \mathbf{M}_{f} and column j of \mathbf{M}_{g}

Algebraic Structure of Linear Maps

General Linear Group GL(n)

Relevant example:

- Invertible $d \times d$ square matrices $\operatorname{GL}(d)=\left(\mathbb{R}^{d \times d}, \cdot\right)$
- Subgroups:
- orthogonal group:
$d \times d$ rotation \& reflection matrices $\mathrm{O}(d) \subset G L(d)$
- special orthogonal group (rotation group):
$d \times d$ rotation matrices $\mathrm{SO}(d) \subset O(d)$
- None are commutative for $d>1$

Notation

Affine mappings

- Rigid motions $S E(d)$ (special Euclidean group):
- All combinations of $S O(d)$ and translations
- Rotations \& translations
- Rigid motions E(d) (Euclidean group):
- All combinations of $O(d)$ and translations
- Rotations, reflections \& translations
- Representation

$$
f(\mathrm{x})=\mathrm{A} \cdot \mathrm{x}+\mathrm{t}
$$

Group Structure

closed operation

all operations always possible $\forall a, b \in G: a \circ b \in G$

$$
\begin{gathered}
\text { associativity } \\
\text { effect "adds up" } \\
\forall a, b, c \in G:(a \circ b) \circ c=a \circ(b \circ c)
\end{gathered}
$$

Neutral element
unique null operation $\forall a \in G: a \circ i d=a$

Inverse
all operations reversible $\forall a \in G: a \circ a^{-1}=i d$

not commutative
intuition: flat structure

Not Commutative!

intuition: flat structure

$$
\forall a, b \in G: a \circ b=b \circ a
$$

Matrix Algebra

Matrix Algebra

Define three operations

- Matrix addition

$$
\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, n} \\
\vdots & \ddots & \vdots \\
b_{m, 1} & \cdots & b_{m, n}
\end{array}\right]=\left[\begin{array}{ccc}
a_{1,1}+b_{1,1} & \cdots & a_{1, n}+b_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1}+b_{m, 1} & \cdots & a_{m, n}+b_{m, n}
\end{array}\right]
$$

- Scalar matrix multiplication

$$
\lambda \cdot\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda \cdot a_{1,1} & \cdots & \lambda \cdot a_{1, n} \\
\vdots & \ddots & \vdots \\
\lambda \cdot a_{m, 1} & \cdots & \lambda \cdot a_{m, n}
\end{array}\right]
$$

- Matrix-matrix multiplication

$$
\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, m} \\
\vdots & \ddots & \vdots \\
b_{k, 1} & \cdots & b_{k, m}
\end{array}\right]=\left[\begin{array}{ccc}
\because & & \ddots \\
\sum_{q=1}^{k} a_{q, j} \cdot b_{i, q} & \\
\ddots & & \ddots
\end{array}\right]
$$

Algebraic Rules: Addition

Addition: like real numbers

 ("commutative group")
Settings

$\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathbb{R}^{n \times m}$
(matrices, same size)

- Prerequisites:
- Number of rows match
- Number of columns match
- Associative: $\quad(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- Commutative: $\mathbf{A}+\mathbf{B}=\mathrm{B}+\mathrm{A}$
- Subtraction: $\quad \mathbf{A}+(-\mathbf{A})=\mathbf{0}$
- Neutral Op.: $\quad \mathbf{A}+\mathbf{0}=\mathbf{A}$

Alg. Rules: Scalar Multiplication

Scalar Multiplication: Vector space

- Prerequisites:
- Always possible
- Repeated Scaling: $\quad \lambda(\mu \mathbf{A})=\lambda \mu(\mathbf{A})$

Settings
$\lambda \in \mathbb{R}$
$\mathrm{A}, \mathrm{B} \in \mathbb{R}^{n \times m}$
(same size)

- Neutral Operation:
$1 \cdot \mathrm{~A}=\mathrm{A}$
- Distributivity 1 :
$\lambda(\mathbf{A}+\mathbf{B})=\lambda \mathbf{A}+\lambda \mathbf{B}$
- Distributivity 2 :
$(\lambda+\mu) \mathbf{A}=\lambda \mathbf{A}+\mu \mathbf{A}$

So far:

- Matrices form vector space
- Just different notation, same semantics!

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

- Prerequisites:
- Number of columns right = number of rows left
- Associative: $(A \cdot B) \cdot C=A \cdot(B \cdot C)$
- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.:
$\mathbf{A} \cdot \mathbf{I}=\mathbf{A}$
- Inverse:
$\left.\mathrm{A} \cdot\left(\mathrm{A}^{-1}\right)=\mathrm{I}\right]$
- Additional prerequisite:
- Matrix must be square!
- Matrix must have full rank

Subset of invertible matrices only:
$G L(d) \subset \mathbb{R}^{d \times d}$
"general linear group"

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring

- Prerequisites:
- Number of columns right
$\mathrm{A} \in \mathbb{R}^{n \times m}$
$\mathbf{B} \in \mathbb{R}^{m \times k}$
$\mathrm{C} \in \mathbb{R}^{k \times l}$ = number of rows left
- Associative:
$(A \cdot B) \cdot C=A \cdot(B \cdot C)$
- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.:
$\mathrm{A} \cdot \mathbf{I}=\mathbf{A}$
- Inverse:
$\mathrm{A} \cdot\left(\mathrm{A}^{-1}\right)=\mathbf{I} 7$
- Additional prerequisite:
- Matrix must be square!
- Matrix must have full rank

Subset of invertible matrices only:
$G L(d) \subset \mathbb{R}^{d \times d}$
"general linear group"

Transposition Rules

Transposition

- Addition:
$(A+B)^{T}=A^{T}+B^{T}=B^{T}+A^{T}$
- Scalar-mult.:
$(\lambda \mathbf{A})^{T}=\lambda \mathbf{A}^{T}$
- Multiplication:
$(A \cdot B)^{T}=B^{T} \cdot A^{T}$
- Self-inverse:
$\left(A^{T}\right)^{T}=A$
- (Inversion:)
$(A \cdot B)^{-1}=B^{-1} \cdot A^{-1}$
- Inverse-transp.:
- Othogonality:
$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
$\left[A^{T}=A^{-1}\right] \Leftrightarrow[A$ is orthogonal $]$

General Matrix Product (Notation)

All operations are matrix-matrix products:

- Matrix-Vector product:
- $f(\mathrm{x})=\mathbf{M}_{f} \cdot \mathbf{x}$

Vectors

Inner product

- Matrix-product row • column

$$
{ }_{„} x \cdot y^{\prime \prime}=\langle x, y\rangle=x^{T} \cdot y
$$

New: Outer Product

$\mathbf{x} \in \mathbb{R}^{n}$
$\mathbf{y} \in \mathbb{R}^{m}$
$\mathbf{x} \cdot \mathbf{y}^{\mathrm{T}} \rightarrow \mathbb{R}^{n \times m}$

Outer product

- Matrix-product column • row

$$
x \cdot y^{T}
$$

- Yields a matrix (rank ≤ 1)
- We'll need this later...

Scalar Product

NOT OK

OK

Scalar Product

Matrix Algebra:

- Scalar product is a special case

$$
\langle x, y\rangle=x^{T} \cdot y
$$

- Caution when mixing with scalar-vector product!

$$
\begin{gathered}
\langle\mathrm{x}, \mathrm{y}\rangle \cdot \mathrm{z} \neq \mathrm{x} \cdot\langle\mathrm{y}, \mathrm{z}\rangle \\
\left(\mathrm{x}^{\mathrm{T}} \cdot \mathrm{y}\right) ; \mathrm{z} \neq \mathrm{x} \cdot\left(\mathrm{y}^{\mathrm{T}} \cdot \mathrm{z}\right)
\end{gathered}
$$

Matrix Algebra Example

Associativity with outer product

$$
\begin{aligned}
x \cdot\langle y, z\rangle & =x \cdot\left(y^{T} \cdot z\right) \\
& =\left(x \cdot y^{T}\right) \cdot z
\end{aligned}
$$

Vectors

Vectors

- Column matrices
- Matrix-Vector product consistent

Co-Vectors

- "projectors", "dual vectors",
 "linear forms", "row vectors"
- Vectors to be projected on

Transposition

- Convert vectors into projectors and vice versa

